Unprecedented Migration of [Pt(dien)]2+ (dien = **1,5-diamino-3-azapentane) from Sulfur to Guanosine-N7 in S-Guanosyl-L-homocysteine (sgh)**

Stella S. G. E. van Boom and Jan Reedijk"

Leiden Institute **of** *Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502,2300 RA Leiden, The Netherlands*

The species $[Pt(dien)(sgh-S)]^{2+}$ 1 formed upon reaction of sgh with one equivalent of $[PtCl(dien)Cl$ at $2 < pH < 6.5$ is found to isomerize intramolecularly into [Pt(dien)(sgh-*N^T*)]²⁺ 2 with Pt coordination at N⁷ of guanosine; upon addition of a second equivalent of $[PLCIdien)]C1$ dinuclear $[\{Pi(dien)\}_2(sgh-N7, S)]^{4+}$ 3 is formed.

It is generally accepted that sulfur-containing molecules are responsible for the inactivation of Cisplatin' and the observed nephrotoxicity.2 Therefore the chemical reactivity of Pt-antitumour drugs to these sulfur-containing molecules, like proteins and peptides such as glutathione, has been the subject of increasing research efforts.^{3,4} So far, no participation in coordination of a nucleobase could be observed when the reactivity of sulfur-containing molecules was investigated, at least when using S-adenosyl-L-homocysteine as a model compound for such an intramolecular competition.5 Therefore synthetic S-guanosyl-L-homocysteine (sgh, Fig. 1) was selected for reaction with Pt compounds, allowing **a** direct, intramolecular, comparison of the reactivity of the sulfur atom with the reactivity of the N⁷ of the very reactive guanine. Monofunctional [PtCl(dien)]Cl (dien = 1,5-diamino-3 azapentane) was taken as the first choice, to avoid possible amine release;⁶ this compound has been used before to mimic the first binding step of Cisplatin to biomolecules.7

S-Guanosyl-L-homocysteine was synthesized by using sodium in liquid ammonia for the reduction of cystine,

according to a modified literature procedure.8 Reactions (5 mmol 1^{-1} concentrations of sgh) with $[PtCl(dien)]Cl$ in D_2O were carried out in an NMR tube over the pH range **2-6.5** and were followed by **1H** NMR spectroscopy as a function of time at 295 K. To monitor the pH-dependent chemical shift behaviour of the 1H signals for the various products, the pH was adjusted with $0.1-\overline{1}$ mol $1-\overline{1}$ solutions of NaOD and DCl.

Three complexes are formed between [PtCl(dien)]Cl and sgh under different conditions: two mononuclear complexes **1**

Fig. 1 Schematic structure of S-guanosyl-L-homocysteine (sgh). The arrows show the Pt binding **sites.**

Fig. 2 H8 guanine proton signals as a function of pH *(a)* for sgh **(m)** and $2(\triangle)$, and (b) for $1(\square)$ and $3(\triangle)$

and **2** and one dinuclear complex **3.** The complexes were characterized by 1H NMR spectroscopy and by their pH titration behaviour of their H^8 and H^8 proton signals. Coordination of Pt(dien) 2^+ at N⁷, as in complex 2^+ and complex 3,[†] produces a downfield shift of *ca*. δ 0.6 of the H⁸ proton.9 In addition, the chemical shift of the H8 proton is pH independent at low pH (Fig. **2);** protonation of N7 is not possible at low pH because of the Pf (dien)²⁺ coordination at N^7 . Another consequence of Pt(dien)²⁺ coordination at N⁷ is the decrease of the pK_a of N^1 by 1.1 and 1.7 log units‡ for complex **2** and **3,** respectively. This increase in acidity is caused by the electron-withdrawing effect of the platinum electrophile at the N7 atom. When coordination at the sulfur atom occurs, as in complex It and **3,** the protons nearest to the sulfur show the largest downfield shifts upon platination and exhibit broadening of their signal. *5* Coordination at the sulfur atom also results in an increased acidity of the amino and the carboxy group. \ddagger

Complexes 1, 2 and 3 are formed in the range $2 < pH < 6.5$. When $pH > 6.5$ the deprotonated amino group is also capable

 \dagger ¹H NMR data with chemical shifts (δ) in ppm relative to TMA at pH **7.0 and 295 K. sgh: 4.82 (H⁸), 2.72 (H¹'), 1.23 (H³'), 1.12 (H⁴'), 0.62** (Ha), **-0.17** (H5'lH5"), **-0.49** (Hy), **-1.07** (HP), H2' under HDO signal.

[Pt(dien)(sgh-S)12+ **1: 4.87** (H8), **2.80** (Hl'), **1.42** (H4'), **1.33** (H3'), **0.70** (Ha), 0.30 (H5'lH5"), **-0.81** (He), 6H2' under HDO signal, 6Hy under dien signal.

[Pt(dien)(sgh-W)]2+ **2: 5.25** (Hs), **2.74** (HI'), **1.22** (H3'), **1.12** (H4'), 0.64 *(Ha),* **-0.49** (HY), **-1.07** (HP), 6H2' under HDO signal, H^{5'/H5"} under dien signal.

[{Pt(dien)}2(sgh-N7,S)]4+ 3: 5.21 (HS), **2.79** HI'), **1.42** (H4'), **1.34** (H3'), **0.59** (Ha), **0.29 (H5'"5''), -0.88** (HP), 6H2' under HDO signal, 6Hy under dien signal.

 \ddagger The pK_a value of N¹ can be derived from the titration curve of the H⁸ signal (Fig. 2); the pK_a values of the carboxy and amino group can be derived from the titration curve of the H^{β} signal (not shown).

§ Broadening is the effect of the occurrence of a pair of diastereoisomers owing to different configurations about the sulfur and an intermediate rate of conversion at room temperature **on** the NMR time scale.

of Pt(dien)2+ coordination. This extra N-donor nucleophile gives rise to four complexes with $NH₂$ coordination. The identification and formation of these complexes will be discussed elsewhere.

The formation of the complexes **1, 2** and **3** can simply be represented as: $\text{sgh} \rightarrow 1 \rightarrow 2 \rightarrow 3$. In the range $2 < \text{pH} < 6.5, 2$ equiv. of [PtCl(dien)]Cl are needed to complete the reaction to yield the final product **3,** characterized as dinuclear $\{\text{Pt(dien)}\}_2(\text{sgh-}N^7,S)^{4+}$ 3. When sgh is reacted with 1 equiv. of [PtCl(dien)]Cl, the major, initially formed product is $[Pt(dien)(sgh-S)]^{2+}$ **1.** Complexes **2** and **3** are formed only as side products in small amounts. Formation of **1** as major product confirms the kinetic preference of Pt compounds for a sulfide linkage.¹⁰ Upon standing, the initially formed complex **1** isomerizes intramolecularly into complex **2** with coordination of Pt(dien)²⁺ at N⁷ of guanine. This migration of $Pt(dien)²⁺$ is an illustration of the thermodynamic lability of the Pt-methionine bond in the presence of a strong nucleophile.11 Compared to the initial formation of complex **1** *(t4* **2 h)** the intramolecular isomerisation into complex 2 is slow $(t₄ 10 h)$. \llbracket A direct reaction of sgh leading to complex 2 hardly, if at all occurs. The formation of **1** and isomerisation into **2** have been followed as a function of time by the isolated chemical shift value of the H⁸ proton. In $[Pt(dien)(sgh-N^7)]^{2+}$ **2,** sulfur is again available for coordination and addition of a second equivalent of [PtCl(dien)]Cl yields the dinuclear $[{Pt(dien)}_2(sgh-N^7,S]^{4+}$ 3.

Reaction of $Pt(dien)²⁺$ with the sulfur atom of sgh in the presence of a reactive G-N7 site in fact would not be unexpected, because of the known high kinetic affinity of Pt for sulfur.1° Our observations are also in agreement with the observation that Pt antitumour compounds react both *in vitro* and *in vivo* with sulfur-containing molecules. However, no participation of a reactive nucleobase in the bond breaking of a platinum sulfur adduct could be detected⁵ until now. To the best of our knowledge these results show for the first time that a N7 donor atom can intramolecularly replace a sulphur donor atom in a platinum-sulfur adduct. This observation could have important consequences, because it supports the hypothesis of a drug reservoir mechanism in which Pt (initially) bound to a protein may react further to yield Pt bound to DNA.

The authors acknowledge EC support (grant in the Human Capital and Mobility programme, ERBCHR XCT **920016)** allowing regular scientific exchange with colleagues in Europe. The authors thank Johnson & Matthey (Reading, UK) for their generous loan of K_2PtCl_4 . The authors are indebted to Dr E. Kuyl-Yeheskiely and her colleagues (Organic Chemistry) for suggestions with the synthesis of sgh.

Received, 14th May 1993; Corn. 3102749J

References

- **1** A. Eastman, *Chem. Biol. Interact.,* **1987, 61,241.**
- **2** R. **F.** Borch and M. E. Pleasants, *Proc. Natl. Acad. Sci. USA,* **1979,76, 6611.**
- **3 S.** J. Berners-Price and P. W. Kuchel, J. *Znorg. Biochem.,* **1990, 38, 305,327.**
- **4** R. **E.** Norman, **J.** D. Ranford and P. J. Sadler, *Znorg. Chem.,* **1992, 31, 877.**
- 5 E. L. M. Lempers and J. Reedijk, *Inorg. Chem.*, 1990, 29, 1880.
- **6** A. **J.** Thomson, R. J. P. Williams and *S.* Reslova, *Struct. Bonding (Berlin),* **1972, 11, 1.**
- **7** N. P. Johnson, **J.** P. Paquet, J. L. Wiebers and **B.** Monsarrat, *Nucl. Acid. Res.,* **1982, 10, 5255.**
- **8 J.** Hildesheim, **R.** Hildesheim and L. Lederer, *Biochimie,* **1972, 54,432.**
- **9** J.-C. Chottard, J.-P. Girault, G. Chottard, **J.-Y.** Lalleland and D. Mansuy, **J.** *Am. Chem. SOC.,* **1980, 102, 5565.**
- **10** T. G. Appleton, J. W. Connor, J. R. Hall and P. D. Prenzler, *Znorg. Chem.,* **1989, 28,2030.**
- 11 E. L. M. Lempers and J. Reedijk, *Inorg. Chem.*, 1990, 29, 217.

t4 values were determined by 1H NMR spectroscopy at pH **4.0.** Estimated error is **50%** owing to the occurrence of side reactions.